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Abstract. Dynamical phase transitions in the Ising model on hypercubic lattices are considered.
Under a linearly swept magnetic field, the hysteresis loop that characterizes the field-driven first-
order phase transition is studied carefully. Using the Glauber dynamics, we find that, in the
mean-field approximation, the energy dissipation of this phase transition or the hysteresis loop
areaA of theM–H curve can be scaled with respect to the sweep rateh of magnetic field in
the formA−A0 ∝ hb, A0 ∝ (Tc − T )a with a = 2 andb = 2/3. However,b varies (b < 2/3)
when fluctuations and spin correlations are taken into account. Monte Carlo simulation is used to
obtain the scaling relation forA in two-, three- and four-dimensional Ising models and we obtain
the exponentsb = 0.36± 0.06, 0.52± 0.04 and 0.65± 0.04 respectively. These exponents are
obviously different from those obtained by scalingA asA ∝ hbT −c for any temperatures in Ising
models under a sinusoidal field. Finally we point out that, in the concept of universality, field-
driven first-order phase transitions in the Ising model in different dimensions belong to different
universal classes due to the spin fluctuation and correlation below the Curie temperature.

1. Introduction

The ferromagnetic Ising model is a simple model that can exhibit a first-order phase
transition (FOPT). Below the Curie temperatureTC , if an Ising system is subjected to a
strong magnetic fieldH , the magnetization of the system may become metastable and show
a discontinuity atH = ±Hs , with Hs the corresponding limit of metastability. The kinetic
approach to metastability has been studied by Binderet al on this model, under the action
of a static external field, by means of Monte Carlo (MC) simulations on square and cubic
lattices [1, 2]. However, effects of time-dependent fields on this phase transition were not
considered.

In the previous decade, the kinetics of FOPTs was extensively studied in the concept of
scaling and universality [3]. Based on the scaling of the autocorrelation function and time
evolution of the mean domain size of the system, the dynamical process of the magnetic
system under an external field was found to have universality [2, 16]. Moreover, some
research works had been concentrated on the scaling of the hysteresis loop area induced
by the sweep field. Among these studies, there were some MC simulations and some
phenomenological models based on Langevin dynamics. In the phenomenological model, a
system with O(N) continuous symmetry was considered [4, 5]. Under the external sinusoidal
field H = H0 sin(ωt), the hysteresis loop areaA induced by this perturbation was scaled as

lim
H0→0

lim
ω→0

A ∝ Ha
0ω

b.
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In the large-N limit, b = 1/2 for the (82)2 model andb = 2/3 for the (82)3 model or
mean-field theory [5–7], and the exponents were found to be independent of the profile of
the periodic fields (for example sinusoidal, step-function or sawtooth fields) [4]. In MC
simulations, only the Ising model was considered under a small-amplitude cosine field [8–
10]. In this case, it had been pointed out that the hysteresis area could be written as the
universal function for any temperaturesA ∼ Hα

0 T
−βg(T δω/Hγ

0 ) ∝ Ha
0ω

bT −c. In the low-
frequency limit,b = 0.36, 0.45 and 0.50 for dimensionalityd = 2, 3 and 4 respectively,
while in the mean-field approximation of [8] and [9] (MFA) the authors obtaineda = 1/2,
b = 1/2 andc = 1.

We are interested in the effect of a linearly swept field with large amplitude on the
Ising model, though there are no differences between the effects of a linearly swept field
and a sinusoidal swept field on theN -vector models [4]. In our consideration, the field-
driven FOPT in the Ising model is independent of the initial value of the linearly swept
field H0, as we keep the sweep rateh constant throughout the transition and begin with the
ferromagnetic spin state belowTC . In such a dynamical phase transition, it is advantageous
that we use a linearly swept field to study the hysteresis of transition, because the hysteresis
is only dependent on the competition between the relaxation time of the metastable state
and the sweep rate. Therefore we can focus on the intrinsic properties of the occurrence of
the hysteresis in a field-driven FOPT, namely, the fluctuation, long-range correlation and
dimensionality.

The paper is organized as follows. In section 2, we present our detailed MC simulation
results on two-dimensional (2D), three-dimensional (3D) and four-dimensional (4D) Ising
models under linearly swept magnetic fields. The scaled relations between hysteresis area
and sweep rate are given. In section 3, a series of coupled equations of magnetization and
spin correlation are derived from the master equation and Glauber dynamics, and solved
numerically to calculate the scaling exponents.

2. Monte Carlo simulations

The MC simulations are carried out on finite lattices subjected to the periodic boundary
condition. Spin numbers are up to more than 104 for all Ising spin systems. Effects on
hysteresis due to finite size are negligible for all these spin systems when spin numbers
N > 5× 103.

We consider a system of interacting Ising spins which are located on supercubic lattice
sites. The Hamiltonian of this system is given by

HIsing = −J
∑
〈i,j〉

SiSj −H(t)
∑
i

Si (1)

where the spin variables are represented by{Si} with Si = ±1; 〈i, j〉 is the sum extending
over all nearest-neighbour spins.H(t) is a linearly swept magnetic field in the units
of kBT /µB . J > 0 is the exchange interaction constant in the units ofkBT (T is the
temperature of the spin system). WhenH(t) = 0, the spin system exhibits a second-order
phase transition from a ferromagnetic state to a paramagnetic state at the Curie temperature
TC , J/kBTC = 0.440, 0.222 and 0.150 for 2D, 3D and 4D systems respectively [11].
Below TC , there is a field-driven FOPT. The spin system might enter a metastable state
characterized byH < 0 with magnetizationM > 0, therefore a hysteresis loop occurs in
theM–H curve ifH(t) is a swept external field.

The procedure of our MC simulation is described as follows: starting from a
ferromagnetic state with all spins up, under the external fieldH0 > 0, we decrease the
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field linearly asH(t) = H0−ht and obtain theM–H curve; then at the ferromagnetic state
with all spins down, under the external field−H0, we increase the field asH(t) = −H0+ht .
The amplitude of this swept fieldH0 is large enough (H0 > |Hs |, Hs is the magnetic field
of spinodal points) that the magnetization jump will occur only after the spinodal points.
Consequently, the hysteresis loop of the FOPT is formed.

In our MC simulations, the sweep rate is measured byh = 1H/1t . After the spin
system{Si} under magnetic fieldH has undergone the spin-flip Metropolis algorithm for
time 1t , the output of{Si} is used as an initial configuration for the same algorithm at
H ±1H . The time unit is set to be one Monte Carlo step per spin (MCS/spin). We have
performed two kinds of swept field: (i) the linearly swept field and (ii) the step-function
swept field. In the first case1t is always maintained to be 1 MCS/spin;h can be modified
by changing the value of1H . In the second kind of magnetic field,1H is fixed to be a
constant andh varies if the holding time1t (MCS/spin) is different. The magnetization
of the system is calculated fromM = 〈6Si〉/N , where〈〉 represents the thermal average.
Under a field of type (i) this average is taken five to ten times; while under a field of
type (ii) M is determined by a coarse-grained average [12]. We have checked several times
that at a sufficiently low swept rateh theM–H curves are the same. Therefore we only
present the MC results under condition (i).

The energy dissipation of an FOPT can be calculated from the hysteresis area of theM–
H curve: A = ∮ MdH . The integral is evaluated by an adaptive recursive Newton–Cotes
eight-panel rule. Cubic interpolation is used to adapt to the integral ofM–H data obtained
from MC simulations. In this kind of numerical method, the accuracy ofA is found to be
less than 1%.

2.1. Scaling of the hysteresis in the 4D Ising model

MC simulation of the 4D Ising model is carried out in the Ising spin system with spin
numbersN = 154. Figure 1(a) is the hysteresis loops at various temperatures belowTC .
At a fixed temperature, the loop areaA decreases with decreasingh and will reach a value
of A0, A0 tends to zero whenT is nearTC . We can then scale the hysteresis area as

A = A0+ f (T )Hb A0 ∝ (TC − T )a f (T ) = f (TC − T ). (2)

At temperatures aboveTC , there is also a hysteresis loop butA decreases to zero at small
h, and it can be scaled in another form:

A = g(T )hb g(T ) = g(T − TC) (3)

the exponentb can be fitted in expressions (2) or (3) by means of least-squares fitting. The
fitting results are shown in figure 2(a) for various temperatures. It can be found that, at
small sweep rates, the exponentsb are the same within calculation error for any temperatures
below the critical temperature:b = 0.65±0.04. AboveTC , the relationship betweenA and
h also has a scaling exponent if 1.2TC > T > TC . However, this exponentb = 0.94±0.06
is different from that belowTC . The temperature scaling exponenta for static hysteresis
areaA0 is valid only for the hysteresis that is obtained at temperatures belowTC , and we
obtaina = 1.82± 0.04.

The scaling exponentb in the 4D Ising model is the same as the mean-field
approximation (MFA) results:b = 2/3 (T < TC) and b = 1 (T > TC), which will be
evaluated in section 3.
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Figure 1. MC simulation results of Ising models: someM–H hysteresis loops under external
fields with various sweep rates. The sweep ratesh (from inner to outer loops at the same
transition temperature) are as follows. (a), (b) 4D Ising model:h = 0.01, 0.02, 0.04, 0.08
(T = 0.5TC ); h = 0.005, 0.01, 0.02, 0.04 (T = 0.6TC ); h = 0.01, 0.02, 0.04 (T = 0.7TC );
h = 0.01, 0.02, 0.04 (T = 0.9TC ); h = 0.02, 0.04 (T = 0.95TC ); h = 0.02, 0.05, 0.1, 0.2
(T = 1.05TC ). (c) 3D Ising model:h = 1× 10−3, 2× 10−3, 4× 10−3, 8× 10−3 (T = 0.5TC );
h = 5×10−4, 1×10−3, 2×10−3 (T = 0.6TC ); h = 5×10−4, 1×10−3, 2×10−3, 2.5×10−2,
5× 10−2 (T = 0.9TC ). (d) 2D Ising model:h = 10−4, 2× 10−4, 5× 10−4 (T = 0.73TC );
h = 5× 10−5, 1× 10−4, 1.5× 10−4, 2× 10−4 (T = 0.88TC ); h = 1× 10−4 (T = 0.95TC ).

2.2. 2D and 3D Ising models

The cubic lattice and the square lattice for MC simulations have sizes of 303 and 1002

respectively. The hysteresis loops for the field-driven FOPT are shown in figure 1(c) for
the 3D Ising system and figure 1(d) for the 2D Ising system. The scaled relationships
between loop areas and sweep rates at various temperatures are shown in figure 2(b) and (c)
respectively. They can also be scaled as the expressions described in equations (2) and (3).

For the 3D Ising system belowTC , the exponents in expression (2) areb = 0.52±0.04
anda = 1.78±0.04. However, there is no definite value for the exponent in expression (3).
We find that the parameterb increases if the temperatureT (>TC) increases and it does
not seem to be a constant. Here we would like to point out the differences between
expressions (2) and (3). Expression (2) is a universal scaling relation for the field-
driven FOPT in the Ising model. However, aboveTC , the hysteresis loop results from
the magnetization process of the spin system under the swept magnetic field, rather than
the FOPT. Therefore expression (3) does not have non-zero static hysteresis and a scaling
exponent. We can also find out the differences between our MC results and those in [8–10].
The cosine field the authors of [8–10] used was so small that transition occurred just as
H = 0+ or H = 0−; the system did not enter the metastable state and the hysteresis could
only be scaled as expression (3).
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Figure 2. Fitting of the hysteresis loop areas with respect to the sweep rate of magnetic field at
different temperatures in the scaling expressions (2) and (3), in (a) two-, (b) three- and (c) four-
dimensional Ising models. The static hysteresis loop areasA0 at different transition temperatures
are given in (d).

In the 2D Ising system, the exponents in scaling expression (2) areb = 0.36±0.06 and
a = 1.04± 0.08. Similar to the 3D Ising system, the hysteresis loop area cannot be scaled
with respect to the sweep rate if the hysteresis does not characterize the field-driven FOPT.

2.3. Summary

The exponents in scaling expressions (2) and (3) are listed for 2D, 3D and 4D systems
in table 1. In 2D and 3D systems, no scaling exponents are found if the systems do not
exhibit a field-driven FOPT. The scaling exponentsa for all dimensions are compared with
the MFA result and they are all shown in figure 2(d).

3. Hysteresis scaling based on the Glauber dynamics of the Ising model

The kinetic Ising model can be obtained from the master equation describing the evolution of
the spin variables{Si}. Now the Hamiltonian of this spin system is described by equation (1)
and an arbitrary state of the system is represented by a set of probabilityP({Si}, t), where
{Si} = {S1, . . . , Sj , . . . , SN }. Following the single-spin flip dynamics (Glauber dynamics),
the time evolution of the system may be governed by the master equation:

d

dt
P (S1, . . . , Sj , . . . , Sn, t) = −

[ N∑
j=1

Wj(Sj )

]
P(S1, . . . , Sj , . . . , Sn, t)

+
N∑
j=1

Wj(−Sj )P (S1, . . . ,−Sj , . . . , Sn, t) (4)
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Figure 3. Hysteresis scaling by MFA. The scaling exponentb is different below and above the
critical temperature. The inset shows the static hysteresis loop areaA0 at different transition
temperatures.A0 = 0 for T > Tc.

whereWj(Sj ) is the transition probability from spin configuration{S1, . . . , Sj , . . . , SN } to
{S1, . . . ,−Sj , . . . , SN }, and it must be determined from the detailed balance conditions:

pe(S1, . . . , Sj , . . . , Sn)Wj (Sj ) = pe(S1, . . . ,−Sj , . . . , Sn)Wj (−Sj ) (5)

with pe = exp[−H({Si})/kBT ]/Z, in Glauber dynamics [13]

Wj(Sj ) = (α/2)[1− Sj tanh(E(Sj ))] E(Sj ) = J
∑
i

Si +H. (6)

Let m(t) = µ1(j, t) = 〈Sj 〉, µ2(ij, t) = 〈SiSj 〉, µn(ij . . . n, t) = 〈SiSj . . . Sn〉, then the
master equation (4) is reduced to the following coupled equations (n = 1, 2, 3, . . .):

d

dt
µn = −αµn + α

n∑
j=1

〈( n∏
i 6=j
Si

)
tanhE(Sj )

〉
. (7)

3.1. The mean-field approximation

In the thermodynamic limitN → ∞, and withµn = 0 exceptµ1(j, t) = 〈Sj 〉 = m(t)

independent of sitej , we have equation (7) withα = 1:

dm(t)

dt
= −m(t)+ tanh[(m(t)+H(t))/T ] (8)

whereH andT are dimensionless in the units of (qJ ) and (qJ/kB) respectively andq is
the numbers of nearest-neighbour sites. The critical temperature atH = 0 is Tc = 1. At
T < Tc, the spinodal point (Hs,ms) on them–H curve can be obtained by setting the left-
hand side of equation (8) to zero, and we haveHs = T ln(1+√1− T )−T ln T −√1− T ,
ms =

√
1− T . Under the linearly swept fieldH(t) = H0 − ht with H0 � |Hs |, (8) is

solved numerically using fourth and fifth Runge–Kutta formulas. The hysteresis loop area
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Figure 4. Magnetization curves at different dimensions when fluctuations are considered.
h = 5× 10−4, 1× 10−3, 2× 10−3, 4× 10−3 for 2D (at kBT /J = 0.8); 3D (atkBT /J = 1.5)
and 4D (atkBT /J = 2). Inset, the pair correlation function near the transition.

can be scaled with respect to the sweep rateh as expressions (2) and (3) forT below and
aboveTc respectively: the results are shown in figure 3. We have the exponentsb = 2/3
(T < Tc) andb = 1 (T > Tc). The static hysteresisA0 at T < Tc is shown in the figure
inserted in figure 3 and the scaling exponenta is given in table 1.

Table 1. Scaling exponents of the field-driven FOPT in Ising models in different dimensions
(H0 is the amplitude of the sweep field).

2D (H0 = 1) 3D (H0 = 4) 4D (H0 = 5) MFA

b (aboveTC ) — — 0.94± 0.06 1
b (below TC ) 0.36± 0.06 0.52± 0.04 0.65± 0.04 2/3
a 1.04± 0.08 1.78± 0.04 1.82± 0.04 2

3.2. The second-order approximation

Now we consider the pair correlation between nearest-neighbourµ2(ij, t) = c(t) = 〈SiSj 〉,
as the second-order approximation in equation (7). Using the fluctuation approximation
derived by Mamadaet al [15], equation (7) is then reduced to a coupled set of equations:

dm(t)

dt
= −m(t)+ 1

2q+1

q∑
n=0

Cnq tanh

[(
H + q − 2n

2

)/
T

]
F(m(t), c(t))

dc(t)

dt
= −2c(t)+ 1

2q

q∑
n=0

Cnq
q − 2n

q
tanh

[(
H + q − 2n

2

)/
T

]
F(m(t), c(t)) (9)

F(m, c) = (1+m(t))−q+1(1+ 2m(t)+ c(t))q−n(1− c(t))n + (1−m(t))−q+1(1− 2m(t)+
c(t))n(1− c(t))q−n.



1870 G P Zheng and J X Zhang

m(t) andc(t) are given in figure 4 by solving (9) numerically. In 2D, 3D and 4D Ising
spin systems, the nearest-neighbour numbers in these hypercubic lattices areq = 4, 6, 8
respectively. BelowTc, the scaling of the hysteresis can be written as expression (2); the
method for determining the sweep rate scaling exponentb is analogous to the MFA. We
obtainb = 0.58, 0.61 and 0.66 for 2D, 3D and 4D Ising systems respectively.

3.3. Discussion

Comparing the exponentsb obtained by the fluctuation approximation with those obtained
by the MFA, we find thatb is smaller than 2/3 at lower dimension because of the fluctuation
and correlation of spins, while in 4Db ∼ 2/3 because the strong fluctuations are negligible.
However, the exponentsb calculated by this second-order approximation are still far larger
than MC results in 2D and 3D. This is because, below the critical temperature, correlation
of spins is not restricted to the pair correlation and, among the nearest-neighbour sites,
correlation of spins in some large clusters is evident belowTc [16]. We have considered
a higher-order approximation in equation (7) by taking moreµn into account, but have
not obtained the optimized values of scaling exponents, compared with MC results. The
time-dependent renormalization group by means of the Migdal–Kananoff approximation
(bond-moving technique) might help in this kinetic Ising model.

4. Conclusions

The hysteresis of a field-driven first-order phase transition in the Ising model is studied. We
have considered the effects of linearly swept field on the energy dissipation of the FOPT. In
Monte Carlo simulations, we find that these energy dissipations can be scaled with respect to
the sweep rates of external field. The scaling exponentb is independent of the temperature
at which the FOPT occurs. The dimensional effect has been studied for the Ising system in
different spatial dimensions: we obtain the sweep rate scaling exponents to be 0.36, 0.52
and 0.65 ford = 2, 3 and 4 respectively. Therefore we conclude that the sweep rate scaling
for the energy dissipation of the field-driven FOPT is universal for the scalar model, and
d-dimensional (26 d 6 4) Ising models belong to different universal classes. Using the
Glauber dynamics, we compare the MC results with numerical results obtained from the
kinetic Ising model by means of the fluctuation approximation and MFA. Different scaling
exponents ind-dimensional Ising models are contributed to by the strong fluctuation and
correlation of spins below the critical temperature.
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